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We develop a simple model for the behaviour of an inviscid stratified shear flow with 
a thin mixed layer of intermediate fluid. We find that the flow is simultaneously 
unstable to oscillatory disturbances that are a generalization of those discussed by 
Holmboe (1962), purely unstable modes analogous to those considered by Taylor 
(1931), and a new type of oscillatory disturbance at large wavelength. The relative 
significance of these different types of instability depends on the ratio R of the depth 
of the intermediate layer to the depth of the shear layer. For small values of R, the new 
type of oscillatory wave has both the largest growthrate for given bulk Richardson 
number Ri,, and is also primarily unstable to disturbances propagating at an angle to 
the mean flow, i.e. such modes violate the conditions of Squire’s theorem (1933), and 
thus the assumption of initial two dimensionality of such flows is invalid. For 
intermediate values of R, the Holmboe-type modes and the Taylor-types modes may 
have wavelengths and phase speeds conducive to the formation of a resonant triad over 
a wide range of Ri,. Thus the presence of an intermediate layer in a stratified shear flow 
markedly changes its stability properties. 

1. Introduction 
In many geophysical flows, density differences in a fluid play a very significant role. 

Both the atmosphere and ocean are stratified (see Gill 1982). This ambient stratification 
often modifies markedly the behaviour of a flow from that of a flow with the same 
initial velocity distribution in a homogeneous fluid. Taylor (1931) was among the first 
to realize that the stability of a stratified fluid undergoing shear is very different from 
that of a homogeneous fluid. Indeed, counter-intuitively, flows that are stable in 
the absence of stratification may be destabilized by (statically stable) variations in the 
density field of the background flow. Such instability often leads to a breakdown of the 
flow, and mixing of fluid of different density, thus altering the background density field. 
It is known (see Turner 1973) that such mixing events, once the turbulence within them 
decays, can lead to a layering of the background density field, with regions of weak 
density gradient alternating with regions of strong density gradient. The stability of 
such layered fluids when the background flow once again becomes sheared is an 
important problem, which is not well understood. This paper is concerned with the 
analysis of a simple model for one mixed layer (i.e. a flow with two regions of strong 
density gradient) embedded within a region of shear, which still exhibits a rich variety 
of possible routes to instability and flow breakdown that are not present when the 
density gradient is either constant, or has only one region of strong gradient. 
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After mixing events associated with flow instability in a sheared stratified fluid, the 
region of mixed fluid has been found experimentally not, in general, to match exactly 
the region of velocity variation, though typically this intermediate layer is wholly 
embedded within the shear layer (see Redondo 1989; Thorpe 1973; Linden 1979). 
Indeed extremely thin intermediate layers have been observed experimentally when the 
stratification is relatively strong (see Narimousa & Fernando 1987; Stephenson & 
Fernando 1991). As we shall see, flows with narrow intermediate layers have the 
potential for primary three-dimensional instability. 

To investigate the significance of variation in the depth of a mixed layer relative to 
shear layer depth, we consider a three-layer density distribution, where the depth of the 
intermediate density layer is of arbitrary (smaller) depth relative to that of the piecewise 
linear shear layer. Since the velocity is taken to be piecewise linear, the background 
vorticity field is piecewise constant. 

In $2, we review and re-interpret previous work by Taylor (1931) and Holmboe 
(1962) on two special cases of such flows. Taylor considered a three-layer flow where 
the intermediate layer extended over the full depth of the shear layer. He found that 
this flow is unstable to disturbances (which we shall refer to as Tmodes) moving with 
the mean speed of the shear flow for all values of the bulk Richardson number, Ri,. 

Holmboe considered a two-layer flow, which, provided Ri, is sufficiently large, is 
unstable to two disturbances, one moving upstream and the other downstream relative 
to the mean speed of the shear layer. We will refer to these unstable modes as Hmodes. 
At finite amplitude these modes equilibrate into disturbances, known as Holmboe 
waves which have been observed experimentally (Browand & Winant 1973). Holmboe 
waves are characterized by regions of overturning centred around the critical levels of 
the flow, where the phase speed of the linear instability equals the background flow 
speed. Numerical calculations of smooth profiles of velocity and density also predict 
the existence of such modes, provided that the characteristic lengthscale of the (single) 
region of gradient in density is significantly smaller than the characteristic lengthscale 
of the region of velocity gradient (see Hazel 1972, and, at finite amplitude, Smyth, 
Klaasen & Peltier 1988). Of particular interest is that these modes require the presence 
of stratification to grow, since for small values of Ri,, the flow is unstable to a 
Kelvin-Helmholtz type instability, with phase speed equal to the mean speed of the 
shear layer. Using the concepts of Cairns (1979), we can identify all these modes with 
interactions of waves on the various interfaces of either vorticity or density. 

Whereas, for the two cases considered before, at intermediate Ri, there is only one 
possible type of instability, we show that three-layer flows in general exhibit H and T 
mode instability at arbitrary Ri,, and another type of instability appears, which in 
certain situations may be very significant to the mixing of the flow. 

In $3, we derive the eigenvalue equation for a symmetric three-layer flow with 
arbitrary intermediate layer depth. We find that for this situation, the eigenvalue 
equation is bicubic in c. 

In $4, we discuss the effect of a region of intermediate density on the growing modes 
predicted by the eigenvalue equation in terms of the possible interactions of interfacial 
waves. An important parameter is found to be the ratio, R, of the depth of the 
intermediate density layer to the shear layer. 

For moderate values of R, at a given Ri,, there are not only Hmodes, but also three- 
layer analogues of Tmodes. These Tmodes arise through a resonance between internal 
waves on opposite density interfaces, and have zero real phase speed in the frame of 
reference moving with the mean speed of the shear layer. There is also a previously 
undocumented region of instability. This region of instability consists of a pair of 
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oscillatory instabilities, with absolute phase speed (relative to the mean speed of the 
shear layer) appreciably less than that of the H mode, and thus likely to have regions 
of overturning at finite amplitude closer to the density interfaces. This mode implicitly 
requires the existence of a three-layer density distribution, and so we refer to it as the 
R mode. 

We map the appearance and eventual dominance of Tmodes, and the disappearance 
of Holmboe-type modes for large R. This is to be expected, since at R = I ,  Taylor 
found no Holmboe-type modes. We also discuss the behaviour of the roots of the 
eigenvalue equation for small Ri,, where we find an approach to the existence of a 
region of Kelvin-Helmholtz type instability as R + 0, related to the region discussed by 
Holmboe when R = 0. We note that the maximal growthrate for a given Ri, of an H 
mode increases as R is increased from 0 to a (global) maximum at R - 0.1. This is of 
significance because it is just such a mode which we expect to see in the laboratory. 

Since both the R and H modes exist only in the presence of stratification, the very 
applicability of the initial consideration of two-dimensional disturbances as being the 
most unstable for a given two-dimensional flow is called into question. We discuss a 
theorem due to Yih (1955), which is essentially a generalization of Squire’s theorem 
(1933) (who considered flow in a channel). A mode whose wavenumber vector is 
oriented at an angle to the mean flow can be identified with an equivalent mode with 
wavenumber vector parallel to a mean flow with a higher Richardson number. Thus 
if the maximal (at a given Ri,,) growthrate of a mode increases at a sufficient (well- 
defined) rate with Ri,, Yih‘s theorem predicts that the mode travelling at an angle will, 
within linear theory, have a larger growthrate than all modes travelling parallel to a 
given flow. In this case, the flow is predicted to be primarily unstable to three- 
dimensional disturbances. 

Although they are destabilized by the stratification, and do not appear in a 
homogeneous flow, two-layer Hmodes are always expected to be primarily unstable to 
two-dimensional disturbances. (The derivation of this result by Smyth et al. (1988) 
maximizes the growthrate with respect to wavenumber rather than with respect to 
Richardson number, though the conclusion is correct.) 

Numerical calculations (Smyth & Peltier 1990) have established that in certain 
regions of parameter space there exists a region of primary three-dimensional 
instability for Re < 400 (defined using half the shear layer depth, and half the change 
in velocity across the shear layer) which may explain the three-dimensionality of the 
waves observed in the laboratory by Browand & Winant (1973) and Lawrence, 
Browand & Redekopp (1991). 

As we show in $4, H modes for arbitrary R are still susceptible primarily to two- 
dimensional disturbances. However, at least initially, the growthrate for the R modes 
is such that they are expected to be primarily three-dimensionally unstable. For certain 
values of Ri,, and a, and for small, but finite R (i.e. R < 0.095) these modes have larger 
growthrates than both the H and T modes at given Ri,, and so there is a region of 
parameter space, where, by a correct application of Yih’s (1955) theorem, the flow is 
subject to a primary three-dimensional instability in this inviscid limit. These small 
values of R have been observed experimentally for Ri, - 5 (see Narimousa & Fernando 
1987; Stephenson & Fernando 1991). 

Since we now observe, for a given Ri, and R, multiple forms of instability, the 
interesting possibility arises for resonance between the various modes of instability in 
the nonlinear regime. Although we do not calculate interaction coefficients, we note 
that for large areas of parameter space for small R < 0.38, linearly unstable H and T 
modes have wavenumbers and phase speeds satisfying the conditions for the formation 
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of a resonant triad (see Craik 1985). This raises the possibility that T modes may arise 
in these situations, even though their linear growthrate is quite small. 

In 95, we interpret and discuss these results, particularly with reference to 
experimental evidence, and draw conclusions on their implications for the long-time 
evolution of an unbounded stratified shear layer. 

2. Review of previous work 
Taylor (1931) was the first to consider a model for the evolution of a mixed layer. 

He considered a piecewise linear velocity profile, forming a shear layer of depth d, 
which in a certain reference frame moving with the mean speed of the shear layer may 
be defined as 

1 !jAU ( z>! jd) ,  

-;AU ( z <  - i d ) ,  

U(Z) = AUz/d  ( - i d  < z < i d ) ,  (2.1) 

and a density field so that { ;+AP ( Z G  -;a 
p ( z ) =  p+$Ap ( - @ < z < < d ) >  (2.2) 

(2  2 $4, 
i.e. the intermediate mixed layer, with a density equal to the mean density of the two 
layers, extends across the entire depth of the shear layer. Proposing a normal mode 
disturbance, with wavenumber k,  the phase speed (non-dimensionalized with :A U,  the 
maximum fluid velocity) must satisfy : 

= 0, (2.3) Ri, (201 - 1) + ePra ePga - (2a - 1)2 --( a 201 )-( 4a2 

which implies instability (i.e. Im(c) > 0) for 

where a, the non-dimensional wavenumber, is 

and Ria is the bulk Richardson number 

The stability boundary (i.e. the curve in (a, Ri,) space dividing growing modes from 
marginally stable modes) is shown in figure 1. In this case all unstable modes have Re(c) 
= c, = 0, and thus propagate at the mean speed of the shear layer. At finite amplitude, 
they develop into intense regions of overturning, and lead to strong mixing of the 
density field. We shall refer to these modes as T (for Taylor) modes. 

Taylor observed that as Ri,, + co, (2.4) implies that the unstable modes asymptote to 
the line 

Ri, = 2a- 1. (2.7) 
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FIGURE 1 .  Stability boundary and asymptote (2.7) (dashed line) with contours of growthrate 
(at intervals 0.04) for the three-layer flow considered by Taylor (193 1). 

As Taylor himself noted, the large a limit corresponds to considering cach interface 
in isolation. Considering the upper interface in isolation corresponds to analysing a 
(non-dimensional) flow where 

The interface supports two marginally stable internal waves with phase speeds 

1 ( 1  +q 
Cli = 1--+ - 

4a- 16a2 2a 
(2.10) 

Similarly the lower interface in isolation would support two marginally stable internal 
waves with phase speeds 

1 
c2* = -1 +-+ 4a - (18,. __ + zy. (2.1 1) 

Requiring that the upstream propagating (relative to the ambient flow) waves of the 
same wavenumber a on the upper and lower interfaces have the same (zero) phase 
speed (i.e. cl- = c2+ = 0) corresponds, in the limit of large a, to condition (2.7). (See 
Howard & Maslowe 1973 for a fuller discussion.) Though we have referred to these 
waves as internal waves, it is important to note that, since the density interface 
coincides with the vorticity interface, the interface will still support a wave that 
propagates upstream relative to the mean flow even if there is no density jump (Le. 
Ri, = 0 in (2.10) and (2.1 1)). In this limiting case 

1 
cl- = -c2+ = 1 -- 

2a’ 
(2.12) 
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FIGURE 2. (a) Stability boundary, for small Ri, for the two-layer flow previously considered by 
Holmboe (1962). Below the locus with maximum at Ri, = 0.07, the solid lines and dashed lines are 
contours of growthrate for the two different zero phase speed instabilities, at contour intervals of 
0.04. Above that locus the contours of growthrate (solid line) and phase speed (dot-dashed line at 
intervals 0.08) are shown for the H modes. (b) Stability boundary and asymptote (2.19) (dashed line), 
for large Ri, for the two layer flow previously considered by Holmboe (1962). Above the locus of 
transition to zero real phase speed instability, the contours of growthrate (solid line) and phase speed 
(dot-dashed line) are shown for the H modes, using the same contour intervals as in figure 2(a). 

which, in the large a approximation, can be identified as the phase speeds of waves 
known as Rayleigh waves, first discussed in the context of the instability of a 
homogeneous shear layer (see Rayleigh 1894). 

In general, (see Cairns 1979) the stability of a flow with discontinuities in the 
background density, velocity or vorticity fields may be qualitatively investigated by an 
investigation of the waves that could occur on each of the interfaces if they were totally 
isolated from each other. This corresponds to the large a limit considered by Taylor. 
Typically, for a marginally stable wave to exist on an interface, energy must either by 
supplied (or removed) from the flow. Cairns referred to a wave which required the 
input of energy as a positive energy wave, while a wave which required the removal of 
energy he referred to as a negative energy wave. Hayashi & Young (1987) showed that 
the wave energy E of an interfacial wave satisfies, in a certain reference frame, 

i3C 
E w - C -  aa (2.13) 

For a wave to be unstable, its growth must not require any variation in the total energy 
of the flow. Thus, it is possible to identify instability with a resonance of two waves, 
with oppositely signed energy (so that their combination leaves the energy of the 
system unchanged) or possibly zero wave energy (typically associated with zero phase 
speed as in the case considered by Taylor from (2.13)) and equal phase speed and 
wavenumber. Thus a classification of the waves by their energy (which typically can be 
achieved by considering each of the interfaces in isolation) allows us to identify the 
possible routes to instability within a flow. 

The other limiting case that throws light on our investigation is that considered by 
Holmboe (1962), namely a two-layer flow with no intermediate mixed layer. He 
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considered the piecewise linear velocity profile (2. l), but with a two-layer density 
distribution, with the only density interface at the midpoint of the shear layer, i.e. 

(2.14) 

In this case, the non-dimensional phase speed satisfied the equation: 

(2.15) 
a 

and the stability boundary is as shown in figure 2. In this flow, since the density 
interface is not coincident with a vorticity interface, we have four waves, two Rayleigh 
waves (one on each of the vorticity interfaces with asymptotic phase speeds given by 
(2.12)) and two internal waves on the density interface, such that if the sign of the phase 
speed of an internal wave and a Rayleigh wave is the same they have opposite wave 
energies. (The actual sign of the energy of a wave is not invariant with respect to 
changes in the frame of reference.) The asymptotic phase speed of the internal waves 
can be calculated by considering the following flow : 

U(2) = z ;  (2.16) 

and (2.17) 

In the limit of large a, such an interface supports two internal waves with phase speeds 
(2.18) 

As is shown in figure 2(a),  for Ri, < 0.07, (2.15) predicts that there exist two unstable 
modes. In the small Ri, case, the zero phase speed instability with larger growthrate 
may be identified with a stratified modification of the instability of a homogeneous 
shear layer discussed by Rayleigh. This arises through an interaction between the two 
Rayleigh waves (i.e. el- = c,, = 0). As Holmboe describes, the effect of the density 
interface is to reduce the band of wavenumbers that allow this locking to take place, 
and also to reduce the growthrate of the mode. At finite amplitude they roll up into the 
well-known Kelvin-Helmholtz billows. 

The zero phase speed instability with smaller growthrate can also be identified with 
a resonance of two interfacial waves at zero wave energy, namely the two internal 
waves on the density interface, with asymptotic phase speeds given by (2.18). Provided 
that the stratification is weak, these two modes may be sufficiently retarded by the 
shear to have zero phase speed, and thus resonate, 

As the stratification increases, the growthrate of the second zero phase speed mode 
increases, until such time as the growthrate of the two unstable modes is the same. At 
this critical condition (see figure 2a) the unstable modes start to have non-zero real 
phase speed. Two resonances now occur simultaneously at non-zero real phase speed. 
First, the Rayleigh wave which is propagating upstream on the upper vorticity 
interface (with asymptotic phase speed c,- given by (2.12)) resonates with the internal 
wave on the density interface that has positive real phase speed, asymptotically given 
by cd+ in (2.18). Secondly, the internal wave with negative real phase speed, 
asymptotically given by cd- in (2.18), resonates with the Rayleigh wave on the lower 
vorticity interface (with asymptotic phase speed c2+ given by (2.12)). These resonances 
occur as the phase speeds of the internal waves can no longer be sufficiently strongly 
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retarded by the shear to bring them to zero. As can be seen in figure 2(b), at large 
wavenumber a and Ri, the region of instability asymptotes to the line 

Ri,, = z- 1. (2.19) 
Analogously to Taylor’s flow, c,- = cd+ = -cd- = -c2+ implies (2.19). 

Thus for Ri, > 0.07 there exist pairs of oscillatory modes with equal and opposite 
real phase speeds. (In fact, owing to the symmetry of biquadratic equations there also 
exist two decaying modes with equal and opposite real phase speeds.) At finite 
amplitude, numerical calculations (see Smyth ei at. 1988) demonstrate that these modes 
develop regions of strong vorticity (and overturning) in the vicinity of the critical layer 
(where the phase speed of the mode corresponds to the background velocity of the 
flow). Two such regions of vorticity, one above and one below the interface lead to the 
pairs of cusped propagating waveforms that have subsequently been observed both 
experimentally (Browand & Winant 1973) and numerically (Smyth et al. 1988), and 
their combination is referred to as a Holmboe or H mode. At finite amplitude, an H 
mode consists of two counter-propagating cusped waves at the density interface, that 
occasionally wisp off small quantities of fluid from their peaks, owing to the region of 
vorticity in the vicinity of the upper critical layer attempting to lift the denser fluid 
upwards, and the lower region of vorticity attempting to pull the lighter fluid 
downwards. (This may be the mechanism for the generation of vortices above and 
below the density interface for intermediate Ri, reported by Narimousa & Fernando 
(1987) as the main mechanism for mixing for moderate to strong stratifications.) As Ri, 
increases, the phase speed of the oscillatory modes, and hence the distance of the 
regions of intense vorticity from the interface increases while the growthrate of the 
mode decreases (after a small initial increase for Ri, < 0.2). Thus the amount of 
wisping, and hence mixing will tend to decrease. Indeed, in a two-layer system, 
Holmboe modes are generally associated with much less mixing than the Kelvin- 
Helmholtz billows. 

Thus, when the depth of the layer of intermediate density precisely matches that of 
the shear layer, the flow is unstable to T modes, while if there is no region of 
intermediate density, the flow is dominated by H mode oscillatory instabilities. 

3. Derivation of governing equations 
We consider the following flow, as depicted in figure 3. We assume that the fluid is 

inviscid, i.e. the kinematic viscosity u = 0. The fluid is stratified in a stepwise fashion 
into three layers, with densities p,p+$Ap, and p+Ap respectively. The central region 
is of arbitrary depth Q relative to the depth of the shear layer d, with midpoint 
coincident with that of the shear layer. For the sake of simplicity we restrict our 
attention to this symmetric situation. We define the ratio, R of the intermediate layer 
depth and the shear layer depth as 

The velocity profile is piecewise linear, defined by (2.1), and the density field is given 
by 

R = 6/d. (3.1) 

p+Ap (Z < -$d), 
P(Z) = p+;Ap  ( - iRd< z < iRd), (3.2) 1 p (z>BRd). 

Since we are ultimately interested in interpreting our results in terms of waves on the 
various interfaces, we follow the technique of Holmboe (1962) and derive evolution 
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FIGURE 3. Schematic diagram of the model flow considered in the text. 

equations for each of the interfaces. This is, of course, equivalent to the classical 
approach of Rayleigh (1 894) matching pressure and vertical disturbance across the 
interfaces. 

Following Holmboe, we consider the vorticity field as being made up of two 
components. The first, which we call the dynamic vorticity of the system, arises from 
the effect of the steps in the density distribution. This vorticity is constantly changing 
on the parcels of fluid on the density interfaces owing to baroclinic effects. 
Remembering that the ambient velocity distribution is a function of z alone, the cross- 
stream (i.e. y )  component of the vorticity equation may be written as, following 
Hoiland (1 948), 

where 6(x) is the Dirac &function, zT is the perturbation displacement of a density 
interface with density jump Ap across the interface, u is the total velocity in the along 
stream (x) direction (i.e. the sum of the ambient and perturbation velocities or U +  u'), 
and D / D t  is the convective derivative, defined as 

D a  
- = -+u-v ,  Dt at 

where u is the vector form of the total velocity. In the linear regime, we see that at some 
height z,, the convective derivative becomes 

D J  ~ a 
- = -+ U(2,)-. 
Dt  at ax (3.4) 

We assume that zT - exp (ikx), i.e. the perturbation is sinusoidal with wavelength 
2n/k.  Thus if we integrate (3.3) over an arbitrarily small region in the vicinity of the 
density interface, we obtain 

D 
Dt (3.5) 
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U+ = lim u, 

u- = lim u. 

z+zy>+ 

Z + Z T -  

(3.7) 

Such a density interface sets up a Laplacian velocity field away from the interface, 
which may be represented by a streamfunction 

Without loss of generality we may transform to a frame of reference, where the 
density interface is at z = 0, if the fluid is unperturbed. Thus, since the fluid is of 
constant density away from z = 0, 

Therefore 

and 

whcre 

U* = fk$’,, 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

is, as usual, the reduced gravity. We note that (3.1 3 )  is a totally local equation, i.e. the 
dynamic vorticity associated with a certain density interface is determined by the 
evolution of that density interface alone. Locally at that interface, since $T is 
decomposable into normal modes we know (see Batchelor 1967) that the dynamic 
vorticity oD is linearly related to, and has the same sign as, $?. Thus, henceforth, when 
we wish to discuss the behaviour of the dynamic vorticity, we shall discuss the 
behaviour of $T. Also we see that away from its rest value zT decays exponentially in 
the z-direction, owing to the constant density away from z = 0. 

The other component of the vorticity field is known as the kinematic vorticity 
and is due to the deformation of vorticity interfaces at the boundaries of the shear 
layer. In this case, the vorticity of the fluid parcels is conserved. Such deformations 
( - exp(ikx) again) will also set up a Laplacian velocity in the surrounding fluid, 
with an associated stream function 

$s(& 2 7  0 = $,(4 $$(x, 0. (3.15) 

Tf we let zs denote the deformation of the boundary of the shear layer, application of 
Stokes’ theorem yields 

(3.16) 

the plus and minus signs being dependent on whether we are considering the upper or 
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lower vorticity interface, respectively. Since we have irrotational flow outside the shear 
layer, the Laplacian nature of the velocity field once again implies that away from its 
rest value, z , ~  decays exponentially with vertical distance. 

Now let us consider the geometry of figure 3. There are six unknowns, namely the 
perturbation disturbances of the upper and lower vorticity interfaces (henceforth 
labelled z1 and z2, respectively), the perturbation disturbances of the upper and lower 
density interfaces, (zu and zJ, and the streamfunctions associated with the dynamic 
vorticity at the upper and lower density interfaces (ykU and $0. The evolution of a 
specific perturbation disturbance is coupled to the evolution of the other disturbances. 
We note that the effect of any perturbation decays exponentially the distance, and that 
by our choice of coordinate system, positive vorticity corresponds to a clockwise 
circulation, so the shear layer, in the absence of density interfaces, would correspond 
to a region of constant positive vorticity. 

Combining the evolution equations of the disturbances, with the dynamic vorticity 
equations, and remembering that the density interfaces now have density jumps of +Ap 
associated with them, we obtain the following coupled system of six differential 
equations 

(3.17) 

(3.18) 

(zl-exp(-k&)zz,) , (3.19) 1 AUexp(-$k(d-&)) 
2kd 

dUexp(-ik(d+8)) (z,-exp (kS) zJj, (3.20) 
2kd $l+exp(-k8)$Ilr,+ 

(3.21) 

-z2 +exp( -kd) z,) +exp (-;k(d+ 8)) ($7L  +exp (kS) z+kJ 

(3.22) 

We note that this model requires R d 1, i.e. the density varying region must be 
embedded in the shear layer. 

We now non-dimensionalize all quantities with respect to the intrinsic scales of 
distance and time of the system, i.e. id ,  the halfdepth of the shear layer, and +AU, the 
maximum absolute value of velocity. Thus if asterisks denote dimensional quantities, 
we transform into non-dimensional variables thus : 

(3.23) 
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There are also clear symmetries in these equations, and so we now consider 
(3.17)-(3.22) in terms of zl+z2,  z,+zl and $u&$l,  i.e. 

(3.24,3.25) 

( z ,  Tz,) + e-& [eaR f e-uR] ($, & $!)) . (3.28, 3.29) 
a 
,(z1&z2) = - 

With this non-dimensionalization, we can eliminate from (3.24)-(3.29) all variables 
except for zI-z2, the relative disturbance of the shear layer. We postulate the classical 
normal mode form for z1-z2, i.e. 

zf  -$ - exp (ik*[x* - c*t*]), (3.30) 

where C* = BcAU (3.31) 

is the dimensional phase speed of the disturbance. In general c can be complex, and we 
write 

(3.32) 

The flow is unstable if ci > 0, with growthrate aci. With this form for z1-z2 
(3.24H3.29) reduce to a bicubic eigenvalue equation in c 

c 5 c, + ici, ( z ,  - z2)  - exp a(c,t + i[x - c,t]). 

c6+a2c4+u4c2+a6 = 0, (3.33) 

where (3.34) 

~ i ;  e-4sR ~ i ,  e-2u 

- +- (2aRsinh2aR++(2a-  l)cosh2aR), (3.35) 
4a2 a3 

Ri, R2 e-4a+ (2a  - 1 ) 2  Ri, e ~ ~ ~ ( 2 a  - 1) 
(2aR2  cosh 2 a R  - Ri, sinh 2aR) .  (3.36) +-( a 4a2 )+ 4a4 

In the limits R = 0 and R = 1, (3.33) reduces, upon division by (c2-R2) ,  to the results 
of Holmboe (2.15) and Taylor (2.3), respectively. 

4. Variation of instability properties with R 
We now turn our attention to the arbitrary R case, and consider solutions of (3.33). 

Although the roots of (3.33) can be written formally in an explicit fashion, using 
Cardano's formula, the form calculated was too complex to reward direct analysis of 
the general result, owing to the dependence on a, Ri,, and R. However, if we restrict 
our attention to attempting to finding general expressions for the transitions from 
marginal stability to instability, significant progress can be made. 
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Also, if we first consider the large a limit of this flow, we know that the upper and 
lower vorticity interfaces, for R =# 1 support Rayleigh waves with asymptotic phase 
speeds given by (2.12), just as in the two-layer case discussed by Holmboe. However, 
there are now two density interfaces within the flow, each of which support two 
internal waves. 

Consider the behaviour of a density interface at z = R in an infinite region of 
constant shear, i.e. 

U(z) = z (-Go < z < Go), (4.1) 

and 

In this case, the complete system is described by two equations for the streamfunction 
$,, and the interfacial displacement z,  thus 

which, for normal mode disturbances, imply that 

(4.5) ( c -R)~- -  Rio - - 0.  
2a 

So, considering the upper density interface in isolation, we can see that it supports two 
internal waves 

Similarly, the lower density interface considered in isolation also supports two internal 
waves 

4.1. Zero real phase speed instability: large a 

In general, a transition to or from instability for a region of zero real phase speed 
instability occurs when c = 0 is a double root of (3.33), which corresponds to 

a6 = 0. (4.8) 
Equation (4.Q from (3.36), can be interpreted as a quadratic equation in Rio for given 
R and a, which, provided R + 0, is satisfied when 

e-4a + (2a - 1)2 + 2(2a - 1) epZx cosh 2aR + e-2aK 

[@a- 1) + epza(lpR)Iz 

or, equivalently 

(4.9 b) 
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When R = 1, (4.9) reduces to 

(4.10) 

which are just the critical limits of (2.4). Also (4.10) shows that, when Ri, = 0, we may 
recover the result of Rayleigh (1894). Provided that 

e-2a < 2a- 1, (4.1 1) 

and hence the flow is stable when Ri, = 0, (4.9) implies that there are two real positive 
values of Ri, where (3.33) has a double root, c = 0. Between these values it is possible 
to verify that a6 > 0, and hence that c = fic,  for some cl, and hence that the flow is 
unstable to a disturbance with zero real phase speed. 

If we wish to identify the interaction of interfacial waves that leads to this instability, 
it is instructive, as before, to consider the large SL limit. In that case, (4.9) reduces to 

Ri, = 2aR2. (4.12) 

Condition (4.12) corresponds to c,- = c,, = 0, (see (4.6) and (4.7)) and so we may 
identify this branch of instability with a resonance between the internal waves on each 
of the density interfaces which are propagating upstream relative to the background 
flow. This is the arbitrary R analogue of the modes discussed by Taylor, and thus we 
refer to them as Tmodes. It is of interest to note that, when R =# 1, these Tmodes arise 
through an interaction of ‘pure ’ internal waves, rather than the combined internal and 
Rayleigh waves (defined asymptotically by (2.11)) considered by Taylor in the R = 1 
case. 

4.2. Non-zero real phase speed instability: large ct 
Of course, in general, the flow may be unstable to disturbances with non-zero real 
phase speed. In that case, owing to the symmetry of the system, at the transition to 
oscillatory instability the eigenvalues of the system must consist of a pair of double 
roots c = f c2, and so c2 must have a double root. For the cubic equation of c2, i.e. (3.33), 
it is well known that the equation has a double root if and only if the discriminant D ,  

By inspection of (3.34)-(3.36), since a, is first order in Ri,, while u4 and a6 are second 
order in Ri,, (4.13) defines a sextic equation in Ri, for givcn ct and R. The derivation 
of this equation is straightforward, though a little laborious. It transpires that the 
constant term is always zero, and hence (4.13) reduces to a quintic in Ri,, 

(4.14) 

where the b, are given in Appendix A. Equation (4.14) implies that there are at most 
five non-zero transitions to or from oscillatory instability at non-zero Ri, for given a 
and R. 

Guided by the relative complexity of the two-layer results of Holmboe (1962) at 
small Ri, and a, we initially investigate the situation for large a. For all R + 1, for 
sufficiently large a, four of the roots of (4.14) are real and positive, and the fifth is 
negative. Typically, the four positive roots subdivide further into two pairs, one at 
appreciably larger a than the other. In figure 4 we show the four positive roots of (4.14) 
(solid lines) and the two roots of (4.8) given by (4.9) (dotted lines) for various SL for 

b, Rii + b, Ri: + b, Rii + b, Rii + 6, Ri, + b, = 0, 
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FIGURE 4. Roots of (4.14) (solid lines) and (4.8) (dotted lines) for a three-layer flow with R = 0.25. 
The dashed lines denote asymptotic conditions for resonance of the various interfacial waves which 
lead to instability. Oscillatory instability is predicted in the shaded areas, while zero real phase speed 
instability occurs for flows with parameters defining points between the two dotted lines. 

R = 0.25. For values of Ri, in the shaded areas, D > 0, and hence (3.33) has two pairs 
of complex conjugate roots c = c, f ici, and c = - c, f ic,. Thus, for general R, this flow 
has two, distinct regions of oscillatory instability. Between the dotted lines, the flow 
exhibits instability of the T mode type. 

As is also shown in figure 4 (by dashed lines), the values of Ri, defining the three 
regions of instability have well-defined asymptotes as a increases. For given Ri,, the 
region at largest a is well predicted by (4.12), and can be identified as the Tmode. The 
region at intermediate a is tending to 

Ria = 2(l-R)(a(l-R)-1), (4.15) 

while the region at smallest a is tending to 

Ri, = 2(1+R)(a(l+R)-l). (4.16) 
To identify the interfacial wave resonances which lead to these instabilities (and hence 
enable us to arrive at (4.15) and (4.16) in a consistent manner) it is necessary to take 
into account waves on the vorticity interfaces. 

By symmetry, we may restrict our discussion to the behaviour of the stable waves in 
the upper half plane. For sufficiently large a and Ria cl- (from (2.12)), c,+ (from (4.6)) 
and el+ (from (4.7)) are all greater than zero. However, owing to the differing 
dependence on a, (2.13) predicts that c,+ and el+ have wave energy opposite in sign to 
that of el-. So we expect instability if their phase speeds are equal at the same value 
of a. In the limit of large a, el- = c,+ implies (4.154, and cl- = el+ implies (4.16). Thus 
the region of instability in figure 4 at intermediate a arises through a resonance between 
the Rayleigh wave and the downstream propagating internal wave on the nearer 
density interface. This is a three-layer analogue of the behaviour described in the 
introduction for the Holmboe waves in a two-layer flow, and so we identify this 
particular branch as an H mode branch. 



270 

0.10 

0.08 

0.06 

R io 

0.04 

0.02 

C. P. CaulJield 

0 0.2 0.4 0.6 0.8 1 .o 
a 

FIGURE 5.  Roots of (4.14) and (4.8) for a three-layer flow with R = 0.05. See texl for explanations 
of the marked transitions 1-4. 

On the other hand, the region of instability in figure 4 at smallest a arises through 
a resonance between the Rayleigh wave and the upstream propagating internal wave 
on the further density interface. This has no analogue in either the two-layer flow of 
Holmboe or the three-layer flow of Taylor, and implicitly requires the existence of an 
intermediate layer. This branch consists of the R modes mentioned in § 1. 

4.3. Instability at small 01 

At small a, in particular if R is also small or close to 1, the effect of the various 
interfaces upon each other can no longer be neglected. This manifests itself in the 
behaviour of the roots of (4.14), which for small a no longer simply delineate two 
branches of instability. As an example, let us consider a flow where R = 0.05, for 
wavenumbers between 0 and I .  In figure 5, we plot the roots of Ri, corresponding both 
to transitions to and from oscillatory instability (solid lines) and transitions to and 
from zero phase speed instability (dotted line). For 0 < a < 0.59, (4.14) has five real 
and positive roots, for 0.59 < a < 0.63, (4.14) has two complex roots and three real 
roots, for 0.63 < a < 0.66, (4.14) has three positive and two negative real roots, while 
for 01 > 0.66, (4.14) has, as previously discussed, four positive real roots, and one 
negative real root. 

In figure 6 we plot the evolution of the phase speed (solid lines) and growthrate 
(dashed lines) for roots of the eigenvalue equation (3.33) against Ri, for 01 = 0.15. It is 
possible to draw analogies with the behaviour at small Ri, for the R = 0 case. As we 
reduce Ri,, we see in both cases a transition (marked at point 1 on figure 5 )  from H 
mode type behaviour, and hence a resonance between the Rayleigh wave on a vorticity 
interface and the internal wave on the nearer (or only) density interface which would, 
if the density interface were isolated, propagate downstream, to two zero real phase 
speed instabilities. One of these is a resonance between the two Rayleigh waves, the 
other being the two (nominally downstream propagating) internal waves. The 
resonance between the two Rayleigh waves continues to occur as Ri, decreases, with 
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FIGURE 6 .  Evolution of the phase speed (solid lines) and growthrate (dashed lines) of the various 
modes, solutions of (3.33), as Ri,, is varied for CY = 0.15, R = 0.05. 

ever increasing growthrate, which is to be expected since this is an instability that is 
essentially homogeneous in character. The internal wave resonance has decreasing 
growthrate as Ri, is decreased. 

However, the internal wave resonance does not retain its behaviour as Ri, is 
decreased. At point 2 in figure 5 ,  as we pass into the region of Tmode type instability, 
the (nominally) upstream propagating internal waves on each of the density interfaces 
resonate. All three (unstable) modes now have zero real phase speed. At point 3 on 
figure 5,  this last Tmode type resonance has the same growthrate as the other internal 
wave resonance which has been decreasing in magnitude of growthrate. Here the 
behaviour changes character. For Ri, below this point, there is a resonance locally 
between the internal waves on each interface. This local resonance has non-zero real 
phase speed, and has no analogue in the R = 0 case studied by Holmboe (1962). Since 
its mechanism for growth is different from that of the Holmboe instability, although 
it has non-zero real phase speed, we will not classify it as an H mode, but rather as an 
L (for local) mode. As can be seen from figure 6, for both the L mode, and the zero 
real phase speed instability between points 1 and 3, the growthrate increases with Ri,, 
thus raising the possibility that these modes are subject to primary three-dimensiona1 
instabilities. However, the Rayleigh wave interaction always has appreciably larger 
growthrate, and it can be verified that all primary instabilities are two-dimensional in 
character. 

As regards the variation of these properties with R, the curve defining the transition 
from H mode type behaviour to that of Rayleigh wave instability varies little as R 
increases from zero. This is unsurprising, since the retarding effect of the two (relatively 
close together) density interfaces on the Rayleigh waves on the vorticity interfaces is 
quite similar to the effect of one (notional) density interface at the midpoint between 
the two density interfaces (the situation studied by Holmboe). The curve defining the 
extent of the region L mode instability lifts off the wavenumber axis as R increases, as 
the possibility of local interaction on a density interface increases. On the other hand, 
as R increases, the interaction between the Rayleigh waves and the internal waves on 
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the nearer density interface becomes stronger (i.e. the H mode resonance), until the 
Rayleigh wave interaction and the L mode interaction become impossible. In this 
situation, as Ri, decreases, the phase speed of the H mode never goes to zero, and thus 
it is never possible for a transfer of resonance with the waves that make up the Tmode. 
For R = 0.05 this takes place at point 4 in figure 5.  As R gets larger this point moves 
to smaller and smaller wavenumber. 

An associated interesting observation is that, as R increases, H mode type instability 
is predicted for arbitrarily small Ri, for a > 0.64, i.e. the region of stability for a 
homogeneous flow. Indeed, as R increases, the value a,,it at which (4.14) has a root at 
Ri, = 0, progressively increases with a well-defined relationship to R, namely 

For flows where R - 1, (4.17) approaches 

or equivalently I 

(4.17) 

(4.18) 

(4.19) 

As has already been mentioned, transitions to and from H mode type instability 
correspond to e2 having a double root in (3 .33) .  Also, H mode instability corresponds 
to a resonance between the Rayleigh waves and the internal waves on the density 
interfaces. When Ri, + 0, (3 .33)  becomes 

= 0.  (4.20) 
eP3 - (2a - l)z 

+R4( 4a' 

Thus, the condition that the (notional) internal waves, and the Rayleigh waves on the 
vorticity interfaces have the same phase speeds is simply (4.1 7).  

When a is close to acrtt, as is shown in Appendix B, b, in (4.14) is positive (negative) 
for a < ( > )acTit. Thus for small Ri,, the discriminant of the eigenvalue equation 
(3.33) is positive (negative) for positive Ri,, and hence there do (not) exist two waves 
with non-zero real phase speed and positive growth for arbitrarily small positive Ria, 
and at that particular wavenumber, for negative but small magnitude Ria the flow is 
stable (unstable). This existence of a region of statically unstable (a, Ri,) space where 
the flow is marginally stable owing to the effects of the shear has been noted before for 
an asymmetric two-layer shear flow (see Lawrence et al. 1991), and is well known in 
situations of convective flow. Of more interest to us is that, for arbitrarily small 
(positive) Ri,, the flow becomes unstable to H mode type disturbances, raising once 
again the possibility that these H modes are subject to primary three-dimensional 
instabilities. 

4.4. Properties of the growing modes 

Though we can identify the possible growth mechanisms and the asymptotic behaviour 
of the system by simple consideration of the various interfaces, it is necessary to solve 
(3 .33)  directly to obtain the full picture for the behaviour of the system under 
consideration. 
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Of particular interest is the question of whether a mode, travelling at an angle to the 
mean flow is predicted to be the most unstable possible mode for a given set of flow 
parameters (in the sense of having the largest growthrate) and thus is predicted to 
dominate the evolution of the flow. 

As is discussed by Srnyth et al. (1988), we consider a normal mode exp[i(a,x+ 
"..I('- lalct)] (i.e. with wavenumber vector a = (ax, ayr 0) and (complex) phase speed c)  
which makes an angle 4 with the background flow, where 

= cos-l h] . (4.21) 

Also, we define the (complex) growthrate a of a mode as 

a = a,+ia,  E i la1 c. (4.22) 

The normal mode can only extract energy (through the Reynolds stress) from the 
component of the background velocity parallel to the wavenumber vector, a, namely 
D C O S ~ .  Similarly, its growthrate in this direction is reduced by a factor ax/(al, i.e. 
cos 4. Thus, this three-dimensional mode has an 'equivalent' two-dimensional mode 
with complex phase speed c cos 9, in a background flow with velocity Ocos $. Since, 
from (2.6), Ri, involves the square of the ambient velocity, this equivalent background 
flow has Rio/cos2 $. 

In general, the growthrate of a mode is a function of the Richardson number 
pertaining in its background flow, as well as the wavenumber of the mode. From the 
above results, we see that the growthrate of the three-dimensional mode is related to 
that of its equivalent two-dimensional mode by the following relationship, as quoted 
by Smyth et al. (1988). 

a(a, q5, Ri,) = g(a,/cos q5, Ri,/cos2 q5) cos $. (4.23) 

(We note that a,/cos$ = Iccl). We can thus calculate the growthrate of the mode 
moving at an angle to the mean flow in terms of a two-dimensional mode in an  
equivalent flow with greater Ri,. However, owing to the factor cosq5 multiplying the 
growthrate on the right-hand side, it is not sufficient to establish that the growthrate 
of a particular type of mode increases as Ri, increases to prove the existence of a 
primary three-dimensional instability, as suggested by Browand & Winant (1973) and 
Lawrence et al. (1991). Nevertheless, simple conditions can be derived involving Ri,. 

From (4.23), we expect to see a three-dimensional instability propagating at an angle 
$ if and only if the maximal (with respect to wavenumber) growthrate at Ri, (which we 
shall denote as a',,,, (Ri,)) is less than (Ri,/cos2 4) cos $. Thus we require, on 
squaring (4.23) then dividing across by Ri,, 

(4.24) 

Thus three-dimensional modes grow most strongly at Richardson number Ri, = Ri, 
say, if and only if 

(4.25) 
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FIGURE 7. Stability boundary, with contours of growthrate (solid lines) of the most unstable mode 
at given wavenumber and Ri, and phase speed (dashed lines) for a three-layer flow with R = 0.25. 
Dotted lines denote the T mode boundaries. Contour intervals are as in figure 2. 

where d/ds is the derivative in the direction of increasing Ri,, along the curve of 
maximal (with respect to wavenumber) uT, and crmas is evaluated on this curve. From 
knowledge of the behaviour of the function 

(4.26) 
we may easily calculate the wavenumber and the angle at which it propagates of 
the most unstable three-dimensional mode for any actual background flow (with 
Richardson number Ri,) provided (4.25) is satisfied for that flow. We simply calculate 
the maximum with respect to Ri, of (4.26), which we define to occur at Ri,. From (4.26) 
we obtain the growthrate of the most unstable mode, and the wavenumber pertaining 
at that maximum is the magnitude of the wavenumber of the most unstable mode. 
Finally, the mode is uniquely determined to be propagating at an angle 

(4.27) 

To illustrate the behaviour of the system, we choose the value R = 0.25 as a suitable 
generic case. Figure 7 is the stability boundary for R = 0.25, with contours of 
growthrate, and for the H and R mode branches, real phase speed. As is suggested by 
substitution of the asymptotic expressions for Ria for an H mode (4.15) and an R mode 
(4.16), respectively, into the asymptotic form of the resonating positive phase speed 
internal wave of the instability (respectively c,+ in (4.6) and cl+ in (4.7)), the real phase 
speed of an R mode is typically smaller than that of an H mode for the same value of 
Ri,. In both cases the phase speed of the mode increases as Ri, increases. As an aside, 
since R modes have smaller phase speeds than H modes for a given Ri,, the region of 
overturning associated with the finite amplitude form of the R mode will be closer to 
the density interface than the region of overturning associated with an H mode. This 
suggests that R modes may lead to more mixing than an H mode with the same 
growthrate, even when the initial disturbance is purely two dimensional. 
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FIGURE 8. Stability boundaries, with contours of growthrate of the most unstable mode at given 
wavenumber and Ri, (solid lines) and phase speed (dashed lines) for three-layer flows with different 
values of R. Dotted lines denote the T mode boundaries. Contour intervals are as in figure 2. Note 
that phase speed contours are for the H mode and are only shown when the H mode is the mode with 
largest growthrate at that wavenumber and Ri,,: (a) R = 0.1; (b) R = 0.3; (c) R = 0.5; and (d) 
R = 0.7. 

For this particular value of R, the growthrate of the T mode is initially the largest 
of the three branches for given Ri,. However, the growthrate rapidly decays as Ri, 
increases, and then the H mode dominates, at least within the constraints of the linear 
theory. For both the R mode and the H mode the growthrate increases initially with 
Ri,. The R mode attains its globally maximal growthrate at appreciably larger Ri, than 
the H mode. 

The behaviour of the solutions as R is varied is quite complex, as is shown in figure 
8. We consider the evolution of each branch separately. As R increases, the T mode 
appears at small Ri,,, and as R tends to 1, this branch approaches the result of Taylor. 
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FIGURE 9. (a) Growthrate contours for the most unstable T mode, at given Ri,, for various R. The 
contour interval is 0.02. (b) Growthrate (solid lines) and phase speed (dashed lines) for the most 
unstable Hmode, at given Ri,,, for various R. The growthrate contour interval is 0.01, while the phase 
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Tn general the growthrate of the most unstable mode for a given Ri, decreases as Ri, 
is increased, but increases as R increases, as shown in figure 9(a). This behaviour 
definitely implies that T modes are primarily two-dimensionally unstable. 

As R increases from 0 initially, the H mode branch moves to smaller CL for given Ri, 
than the R = 0 situation considered by Holmboe. As R increases beyond about 
1 - 1 / ~ ' 2 ,  however (as can be derived from comparison between (4.15) and the two 
layer result (2.19)), the H mode branch starts to move to large a, and eventually 
disappears at R = 1. For small Ri,, we see the existence of H modes for a < as 
defined by (4.17). As can be seen in figure 9(b), for sufficiently small R, the growthrate 
of the most unstable H mode initially increases with Ri,, although never sufficiently 
rapidly to imply that the mode is subject to three-dimensional primary instabilities, 
even in the region where for infinitesimally small positive Ri,, the flow is destabilized. 
(This is verified in figure 9(c), where we plot the expression (4.26) for the most unstable 
H mode. Note the monotonic decrease as Ri, increases.) The global maximum for 
growthrate of an H mode actually occurs at non-zero R (around R = 0.08 from figure 
9b) ,  and thus the presence of an intermediate layer actually may lead to the increased 
destabilization of the flow to Holmboe instability. At small Ri, and R ,  the growthrate 
of the L mode initially increases with Ri,: but also never sufficiently swiftly to imply the 
existence of primary three-dimensional instability. Also, for certain intermediate Ri,, 
the growthrate of a three-layer H mode is greater than that of the equivalent two-layer 
H mode for R < $. 

Finally, the R mode branch emerges from the Ri, axis at small R, initially broadens 
and moves to larger a as R increases, and ultimately, as R tends to 1, narrows about 
its asymptotic result for R = 1 in (4.16). Considering the most unstable R mode, for 
given R the growthrate typically increases with Ri, quite rapidly, in general sufficiently 
quickly to imply three-dimensional primary instability (see figures 9 (d) and 9(e), in 
particular the non-monotonic variation of (4.26)). For given Ri,, the growthrate 
initially increases with R. However as R increases, the value Ri,,, of Ri, at which, for 
given R the growthrate is globally maximized decreases as R decreases, and thus the 
region of primary three-dimensional instability of the mode considered in isolation 
decreases, as does the largest possible angle of cross-stream propagation. 

However, for the R mode to dominate the flow, it is necessary for the R mode, for 
given Ri,, to have larger growthrate than both the other two branches. 

Thus, it is important to establish the region in (R ,  Ri,) space where the R mode is 
both susceptible to a three-dimensional primary instability, and also has larger 
growthrate than both the H a n d  Tmodes. This region is shown in figure lO(a). Three- 
dimensional primary instability is expected for some Ri, provided that R < 0.095. The 
maximum possible angle of propagation of a three-dimensional mode decreases as R 
increases, which can be verified by application of (4.27) for two separate values of R. 
For example, when R = 0.01, Ri,, defined as above as the value of Ri, where (4.26) 
is maximized, is equal to 21.94. The smallest value of Ri, at which the R mode is 
globally the most unstable mode is Ri, = 4.66, thus predicting a maximal angle of 
propagation (from (4.27)) of about 62.6". From figure lO(a), the corresponding values 
for a flow with R = 0.02 are Ri, = 11.65 and Ri, = 4.14 thus predicting a maximal 
angle of propagation of about 53.4'. As for the other characteristics of these three- 

~~~~ ~~ ~ 

speed contour interval is 0.08. (c) u:,,JRio contours for the most unstable H mode, at given Ri,, for 
various R. The contour interval is 0.01. (d )  Growthrate (solid lines) and phase speed (dashed lines) 
for the most unstable R mode, at given Ri,, for various R. The contour intervals are as in figure 9 (h).  
(e) U ~ , ~ ~ / R ~ , ,  contours for the most unstable R mode, at given Rz,, for various R. The contour interval 
is 5.0 x lo-". 
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FIGURE 10. (a) Region of (R, Ri,) space where the R mode is both the most unstable normal mode 
and susceptible to primary three-dimensional instabilities. (b) The phase speed of the globally most 
unstable R mode for various R. (c) The wavenumber of the globally most unstable R mode for various 
R. (d )  The growthrate of the globally most unstable R mode for various R. 

dimensional modes, the magnitudes of the phase speed, wavenumber and growthrate 
of this mode all increase monotonically with R as shown in figures lo@)--lO(d), 
respectively. 

Thus, our calculations imply that flows where the density is layered are, for a wide 
range of Ri,, initially unstable to multiple different disturbances, which may be 
considered as generalizations of the instabilities considered by Holmboe (1962) as well 
as purely unstable zero phase speed disturbances analogous to those considered by 
Taylor (1931). If there is a thin central density layer, such shear flows are predicted to 
be most unstable to disturbances propagating at an angle to the mean flow, and thus 
the flow must, from the outset, be considered in its full three dimensions. When the R 
mode is susceptible to primary three-dimensional instability, the flow will attempt to 
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generate vorticity with some spanwise component. Thus the perturbation of the density 
interfaces is likely to be highly complex, and may lead to significantly enhanced mixing. 

4.5 Resonant triads 
For intermediate R,  the H mode is still the most unstable mode for intermediate Ri,, 
and as mentioned above, the growthrate is often larger than that suggested by the two- 
layer calculations. Only for very large R does linear stability theory predict that the 
most unstable mode for given Ri, is likely to be of T mode type. Thus, linear theory 
predicts that unless the density and shear layer lengthscales are closely matched, the 
flow will primarily be susceptible to H mode type disturbances, and they should 
dominate at intermediate values of Ri,. 

However, because of the multiple possible modes supported by the flow that we are 
considering, the possibility for resonance between three waves within the system 
cannot be discounted. In particular, for any given Ri,, there are typically five waves 
that are predicted to undergo, at least initially, exponential growth. If three of these 
waves could resonate when they reached finite amplitude, their amplification, and 
hence the approach to breakdown and mixing of the background flow, might be 
significantly enhanced. 

It is well known (see Craik 1985) that three modes, with real phase speeds c,, c, and 
c3, and wavenumbers a,, a2 and a3 form a so-called resonant triad, and hence wave 1 
and wave 2 may possibly resonate to amplify wave 3, if 

a, = a1 + a2, 
a, c, = a, c, + a, c,. 

(4.28) 

(4.29) 

Of particular interest is resonance between modes that are already linearly unstable, as 
such modes have a well-understood route to finite amplitude and may then be 
preferentially amplified to dominance of the flow, even if their linear growthrates are 
quite small. Since the H mode branch actually consists of two unstable modes each at 
the same wavenumber aH with equal and opposite real phase speed, and the T mode 
branch consists of zero real phase speed instabilities with wavenumber aT, a resonant 
triad between a T mode and the two constituent parts of an H mode requires that 

aT = 2aH, (4.30) 

as (4.29) is automatically satisfied, since c, = 0 and 01, = a, = aH, c, = - c, = cH by 
the symmetry of the system. 

From figures 8 (a) and 8 (b), the T mode branch, is, for smaller R, typically at larger 
a than the H mode branch. Indeed, from comparison of the asymptotic results for the 
T mode branch (4.12) and the H mode branch (4.15), the resonance condition (4.30) 
implies that, at large a, 

2 Ri, +--- 
(1 -R)  - 2R2 ' 

R i, 
(1 - R)' 

(4.3 1) 

or 

which in the limit of large Ri, implies that 
- 4R3 + R'(4 + Ri,) + 2Ri0 R - Ri, = 0, (4.32) 

R = 4 2 - 1 .  (4.33) 

Thus, for R < 0.4, there is at least the possibility that nonlinear resonance may take 
place for some Ri, between the H modes and the T mode, though no attempt has been 
made to calculate the interaction coefficients. 
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FIGURE 11. Region of aH-RiO space where it is possible for the T mode to form a resonant triad 
with the Hmode waves for R = 0.25 (solid lines), R = 0.3 (dashed lines), R = 0.35 (dotted lines) and 
R = 0.4 (dot-dashed lines). 

In figure 11, we show the regions of (aH,  Ri,) parameter space where (4.30) is 
satisfied for several values of R. There is the possibility of nonlinear resonance for a 
wide variety of initial background flows. For small R, the region of (aH,  Ri,) space 
where nonlinear resonance may be possible is restricted to small Ri,. However, as R 
increases, and thus, as can be seen in figure 8, the T mode branch moves to smaller a: 
for given Ris, the region for possible resonance increases in area, and the maximal Ri, 
for the possibility of resonance increases in value. Ultimately, however, the H mode 
branch starts to move to larger a, and around R = 0.373, the two mode branches pass 
through a critical condition, namely 

CISH = 2aLT,  (4.34) 

for some Ri,, where aSH is the locus of wavenumbers defining the smaller a stability 
boundary for the H mode, while aLT is the locus of wavenumbers defining the larger 
a: stability boundary for the T mode. For values of R larger than that which first 
satisfies (4.34) the region of possible nonlinear resonance rapidly shrinks, and as R 
increases, the formation of a nonlinear triad is once again only possible for very small 
Ri,. For intermediate values of R the flow may be able to excite resonant triads of 
linearly unstable modes for flows with significant Ri,. 

It is important to stress that nonlinear resonance within this flow does not require 
the consideration of modes propagating at an angle to the mean flow (see Craik 1968) 
owing to the properties of the eigenvalue equation (3.33). The calculation of the actual 
coefficients of interaction has not been conducted. Nevertheless, it is possible that, for 
flows at small R, although the linear growthrate of the T mode is appreciably smaller 
than that of the H modes at intermediate Ri,, the T modes may be preferentially 
amplified by a resonance with these H modes, and hence grow to finite amplitude. 
Thus, even for relatively narrow intermediate layers, significant overturnings in the 
interior of the layer are not to be totally discounted, although a conventional 
interpretation would be that in a laboratory or geophysical flow the most unstable H 
modes would be the dominant structures at finite amplitude. We have demonstrated 
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that, far from being restricted to the R = 1 case initially considered by Taylor, T mode 
type instabilities are to be expected in multi-layer stratified shear flows, even when the 
intermediate layer is relatively narrow, and they are likely to be associated with H 
modes, growing within the same flow. 

5. Conclusions 
The existence of an intermediate region of intermediate density, within a shear layer 

of piecewise constant vorticity leads to the development of generalizations of the 
previously observed forms of instability discussed by Holmboe and Taylor, which we 
refer to as H modes and T modes, whose properties are altered by the intermediate 
density region in a non-trivial way. The ratio R (defined by (3.1)) of the depths of the 
intermediate density layer and the shear layer is a very important parameter to describe 
the qualitative behaviour of the linear stability of the flow. 

The two modes in general will appear within the same flow for all Ri,, and the two 
previously studied cases discussed in $2 are seen to be highly critical limiting cases of 
a more general class of flows. The presence of an intermediate density region implies 
that Holmboe waves can have larger growthrates than those predicted by two-layer 
models over a very large range of intermediate layer widths up to R = f. Also, for 
R < 0.4, there is a wide range of Ri, over which there is the possibility of nonlinear 
resonance between the two different modes. Thus, even where the linear growthrate of 
the T mode is quite small relative to that of the H mode (i.e. flows where R is 
appreciably less than l), the possibility of T modes appearing at finite amplitude 
cannot be discounted. 

Since we are likely to have an intermediate region in any physically realizable flow, 
we thus expect the phenomenon of both Holmboe wave type and T mode type 
solutions to be more common than previously assumed, since we see that their 
existence is predicted for all R < 1. 

We map the transition from H to T mode type solutions with R and see that the 
stratified T mode type solution has a very different growth mechanism from that of the 
instability first considered by Rayleigh in a homogeneous shear layer. 

For both these modes we see that a vital destabilizing mechanism is the statically 
stable density distribution. H modes can be thought of as being destabilized by an 
interaction between an internal wave on a density interface and a Rayleigh wave on the 
nearer vorticity interface, while T modes are implicitly driven by an interaction 
between internal waves on the two density interfaces. Thus it is an over-simplification 
to believe that H modes are only of importance when the intermediate layer is 
arbitrarily narrow in width. 

For certain parameter ranges we also observe the existence of a new form of 
instability, which we refer to as the R mode. This instability is triggered by an 
interaction between waves on a density interface and the further vorticity interface. It 
is oscillatory, with a smaller phase speed than that of the H mode. 

Modes within the new region of instability can be both globally the most unstable 
mode, and also primarily unstable to a disturbance propagating at a non-zero angle to 
the mean flow, since the growthrate of the most unstable mode within this region 
increases sufficiently quickly with Ri, in certain circumstances, in particular when the 
two density interfaces are close together. Since modes propagating at an angle ‘feel’ a 
larger Ri,, they have the potential to have larger growthrate. 

This behaviour is predicted to occur for narrow intermediate density regions and 
large Ri,. Such situations arise naturally during laboratory experiments. (Narimousa 
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& Fernando 1987) on notionally two-layer flows. Thus the presence of this new, 
theoretically dominant mode of instability for a stratified shear layer may be significant 
in assessing the mixing in shear flows at high Ri,. 

Since the function (4.23) whose behaviour predicts the existence of a three- 
dimensional primary instability is an even function of this angle of propagation to the 
mean flow, when we have three-dimensional behaviour we expect to see two modes, 
which should constructively interfere with each other, and thus lead to a highly non- 
uniform cross-stream structure. From laboratory evidence (see Lawrence et al. 1991), 
the onset of significant cross-stream inhomogeneities may be closely followed by a 
breakdown in the flow organization and the onset of mixing. Such mixing is 
significantly more intense than that associated with the finite amplitude form of, at 
least approximately, two-dimensional Holmboe modes (see Browand & Winant 1973). 

Previous work (Smyth & Peltier 1990) has only predicted the existence of three- 
dimensional primary instability for flows with 200 < Re < 400, which is several orders 
of magnitude smaller than typical Reynolds numbers in the atmosphere or the ocean. 
The transition to three-dimensional behaviour (and hence to enhanced mixing, an 
increase in R: and ultimately the dominance of billows) through a secondary instability 
of the finite amplitude forms of the modes is likely to be important and relevant, (see 
Thorpe 1987) especially since it is well known that in a homogeneous flow billow type 
structures are subject to a cross-stream instability owing to streamwise vorticity. 
Analysis of the stratified analogue of such behaviour is clearly beyond the scope of this 
linear theory. However, the demonstration that it is possible for an inviscid flow to be 
subject to a primary three-dimensional instability shows that we must be extremely 
careful in our application of the commonly used two-dimensional models, whether 
linear or nonlinear, to realistic situations with a thin intermediate density region. 

This paper discusses some of the results in the author's PhD thesis. Thanks are due 
to Dr P. F. Linden for many useful discussions. The support of a College studentship 
from Churchill College, Cambridge is gratefully acknowledged, as is an SERC CASE 
award with the Health and Safety Executive, Sheffield. Preparation of the manuscript 
was supported by the Japan Canada Project in Weather and Climate of the Arctic at 
the University of Toronto. 

Appendix A. Calculation of discriminant D 

in Ri,: 
The discriminant D, defined by (4.13), may be expressed as a sixth-order polynomial 

b, Ri: + b, Rii + b, Rii + b, Rii + b, Rit + b, Rin + b, = 0. 

The bi are defined as follows: 

- 4 YE + vj: , b, = ~ 108 27 



Multiple linear instability of layered stratilied shear flow 28 3 

-";YoYl "O"1.Y; I Y ;  ~ O ~ l Y O Y '  ":YlY' I 2YOYlY2 I "?ZO "1Yz"o 
54 54 27 27 54 9 27 6 

b, = 

2 
-"O"lY: "OYOY, Y t Y 1  I " i X 9 0  

54 54 9 9 
b, = 

where 

"1 = - 1/01, 

yo = -2R )+R4, 

r-4a+(2a- 'I2) - R2/a 2R sinh 2aR +- (2a- 1) cosh2aR), (A 12) 4a3 2a Y1 = 

(e-4a + (2a - 1)') R' eCZu(2a - 1) cosh 2aR z1 = R' + 
4a3 2a3 7 

(A 16) 
e-4a( 1 - eraR) - (201 - l)z (1 - eC4aR) e-2a(2a - 1) sinh 2aR z2 = - 

1 6a4 4a4 
The x, ,y ,  and z, are simply the coefficients of Ri: in a2, a4 and a6, respectively, defined 
by (3.34)-(3.36). From (A 9), (A 11) and (A 14), (A 8) implies that b, = 0 as stated in 
54.2. 

Appendix B. H modes at small Ri, 
For small IRiol, the sign of D, and hence the stability of the normal modes of the system, 
is determined by the sign of b, in (4.14). We are interested in the behaviour of D for 
wavenumbers close to acrZt defined by (4.17). For a given value of R, let us consider 
disturbances with wavenumber ap where ap is defined by 

(201, - - eC45 
4ai - 6' R2 = 

12-2 
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for some small parameter 

We note that when E > ( < ) 0, zP > ( < ) aCrit. We may substitute for R2 through use 
of (B 1) into the expression for b,, i.e. (A 7), using binomial expansions where 
necessary. The expression for b, becomes 

- exp ( - 2 4  Xe3 
b, = ($ exp ( - 2ap) + $(2a, - 1) cosh 2ap ~ 

9a; 

+gap $ sinh 2a, x") + 0(e4), (B 3) 

where (2ap - 1)' - ec4%p 
X -  

4 4  

From (B 3), since ap > 0.64 for all non-zero R ,  and hence X > 0, b, is opposite in sign 
to E ,  for small E .  Thus h, is opposite in sign to ap  - acrztr and hence when aP - acrit < 0, 
then b, > 0, and so D > 0 for small enough positive Ri,. This implies that the 
eigenvalue equation (3.33) has complex conjugate solutions for Ri,, > 0, and real 
solutions for Ri, < 0, as required. 
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